The relationship between melatonin level and antioxidant enzymes in diabetic patients with and without nephropathy

Authors

  • Asaad Al-Khafaji Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
  • Seyed M. Mir Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
  • Fatemeh Mohammadzadeh Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
  • Maryam Abolghasemi Department of Clinical Biochemistry, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
  • Mahmoud H. Hadwan Department of Chemistry, College of Science, University of Babylon, Hillah, Iraq

DOI:

https://doi.org/10.47419/bjbabs.v4i02.207

Keywords:

antioxidants, diabetic nephropathy, diabetes mellitus, enzymes, melatonin, oxidative stress

Abstract

Background and objective: Diabetes is the most common cause of chronic renal disease globally. Diabetic nephropathy (DN) is one of the most serious consequences of type 2 diabetes. Melatonin, a powerful antioxidant that has been shown to alleviate DN, deficiency and a functional relationship between melatonin and insulin have been linked to the etiology of type 2 diabetes mellitus. The purpose of this research is to assess the relationship between melatonin level and antioxidant enzyme activity (catalase, glutathione peroxidase, superoxide dismutase, paraoxonase 1, and glutathione-s-transferase) in diabetic patients with and without nephropathy.

Methods: This case-control study was conducted on 45 healthy control subjects, 45 diabetic patients without nephropathy, and 45 diabetic patients with nephropathy. Serum samples of participants were used to evaluate antioxidant enzyme activities, melatonin levels, and MDA using specific assays.

Results: The results showed that the concentration of melatonin is not affected in diabetic patients without nephropathy, but decreased significantly in diabetic patients with nephropathy when compared with healthy subjects. Antioxidant enzymes activity in sera of diabetic patients with and without nephropathy were significantly lower than that of healthy subject group. The superoxide dismutase enzyme has a specific exception because its activity is elevated, unlike other antioxidant enzymes.

Conclusions: Melatonin decreased significantly in sera of diabetic patients with nephropathy. Diabetic nephropathy affects antioxidant enzymes activity and lipid peroxidation significantly compared with healthy controls.

Downloads

Download data is not yet available.

References

McMullan CJ, Schernhammer ES, Rimm EB, Hu FB, Forman JP. Melatonin secretion and the incidence of type 2 diabetes. Jama. 2013 Apr 3;309(13):1388-96. DOI: https://doi.org/10.1001/jama.2013.2710

Satari M, Bahmani F, Reiner Z, Soleimani A, Aghadavod E, Kheiripour N, Asemi Z. Metabolic and anti-inflammatory response to melatonin administration in patients with diabetic nephropathy. Iranian Journal of Kidney Diseases. 2021;1(1):22.

Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes 2017. Hindawi; 2018. DOI: https://doi.org/10.1155/2018/3086167

Nickerson HD, Dutta S. Diabetic complications: current challenges and opportunities. Journal of cardiovascular translational research. 2012;5(4):375-9. DOI: https://doi.org/10.1007/s12265-012-9388-1

Khiewkhern S, Yoosook W, Thongkum W, Srichompoo C, Thitisutti S. Risk Factors of Diabetic Nephropathy Development in Type 2 Diabetic Patients: A Cross-sectional Retrospective Study. Journal of Clinical & Diagnostic Research. 2021;15(2). DOI: https://doi.org/10.7860/JCDR/2021/45802.14549

AlBatch M, ElFasakhany F, Sheta A, Kasim S. Effect of Melatonin on Some Oxidative Stress Parameters in Streptozotocin-Induced Diabetes in Rats. Bulletin of Egyptian Society for Physiological Sciences. 2008 Jun 1;28(1):121-40. DOI: https://doi.org/10.21608/besps.2008.36843

Zhang T, Wang Y, Ma X, Ouyang Z, Deng L, Shen S, et al. Melatonin alleviates copper toxicity via improving ROS metabolism and antioxidant defense response in tomato seedlings. Antioxidants. 2022;11(4):758. DOI: https://doi.org/10.3390/antiox11040758

Cuzzocrea S, Thiemermann C, Salvemini D. Potential therapeutic effect of antioxidant therapy in shock and inflammation. Current medicinal chemistry. 2004;11(9):1147-62. DOI: https://doi.org/10.2174/0929867043365396

Flora SJ. Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxidative medicine and cellular longevity. 2009 Sep 1;2(4):191-206. DOI: https://doi.org/10.4161/oxim.2.4.9112

Milosavljević A, DJukić L, Toljić B, Milašin J, Dželetović B, Brković B, et al. Melatonin levels in human diabetic dental pulp tissue and its effects on dental pulp cells under hyperglycaemic conditions. International Endodontic Journal. 2018;51(10):1149-58. DOI: https://doi.org/10.1111/iej.12934

Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of biological Chemistry. 1974;249(22):7130-9. DOI: https://doi.org/10.1016/S0021-9258(19)42083-8

Rotruck JT, Pope AL, Ganther HE, Swanson A, Hafeman DG, Hoekstra W. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179(4073):588-90. DOI: https://doi.org/10.1126/science.179.4073.588

Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European journal of biochemistry. 1974;47(3):469-74. DOI: https://doi.org/10.1111/j.1432-1033.1974.tb03714.x

Hadwan MH, kadhum Ali S. New spectrophotometric assay for assessments of catalase activity in biological samples. Analytical biochemistry. 2018;542:29-33. DOI: https://doi.org/10.1016/j.ab.2017.11.013

Gałczyński K, Bełtowski J, Nowakowski Ł, Vasilevska D, Rechberger T, Semczuk A. Serum paraoxonase 1 activity and protein N-homocysteinylation in primary human endometrial cancer. Tumor Biology. 2018;40(9):1010428318797869. DOI: https://doi.org/10.1177/1010428318797869

Jo C, Ahn D. Fluorometric analysis of 2-thiobarbituric acid reactive substances in turkey. Poultry science. 1998;77(3):475-80. DOI: https://doi.org/10.1093/ps/77.3.475

Shan Z, Ma H, Xie M, Yan P, Guo Y, Bao W, Rong Y, Jackson CL, Hu FB, Liu L. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes care. 2015 Mar 1;38(3):529-37. DOI: https://doi.org/10.2337/dc14-2073

Guo C, He J, Deng X, Wang D, Yuan G. Potential therapeutic value of melatonin in diabetic nephropathy: improvement beyond anti-oxidative stress. Archives of Physiology and Biochemistry. 2021 May 26:1-2. DOI: https://doi.org/10.1080/13813455.2021.1933539

Liu F, Zhang S, Xu R, Gao S, Yin J. Melatonin attenuates endothelial-to-mesenchymal transition of glomerular endothelial cells via regulating miR-497/ROCK in diabetic nephropathy. Kidney and Blood Pressure Research. 2018;43(5):1425-36. DOI: https://doi.org/10.1159/000493380

Ertik O, Sener G, Yanardag R. The effect of melatonin on glycoprotein levels and oxidative liver injury in experimental diabetes. Journal of Biochemical and Molecular Toxicology. 2022 Dec 16:e23268. DOI: https://doi.org/10.1002/jbt.23268

Guven A, Yavuz O, Cam M, Ercan F, Bukan N, Comunoglu C, Gokce F. Effects of melatonin on streptozotocin-induced diabetic liver injury in rats. Acta histochemica. 2006 Jul 10;108(2):85-93. DOI: https://doi.org/10.1016/j.acthis.2006.03.005

Vural H, Sabuncu T, Arslan SO, Aksoy N. Melatonin inhibits lipid peroxidation and stimulates the antioxidant status of diabetic rats. Journal of pineal research. 2001 Oct;31(3):193-8. DOI: https://doi.org/10.1034/j.1600-079X.2001.310301.x

Shima T, Chun SJ, Niijima A, Bizot-Espiard JG, Guardiola-Lemaitre B, Hosokawa M, Nagai K. Melatonin suppresses hyperglycemia caused by intracerebroventricular injection of 2-deoxy-D-glucose in rats. Neuroscience letters. 1997 Apr 25;226(2):119-22. DOI: https://doi.org/10.1016/S0304-3940(97)00257-7

Maitra SK, Dey M, Dutta S, Bhattacharya S, Dey R, Sengupta A. Influences of graded dose of melatonin on the levels of blood glucose and adrenal catecholamines in male roseringed parakeets (Psittacula krameri) under different photoperiods. Archives of physiology and biochemistry. 2000 Jan 1;108(5):444-50. DOI: https://doi.org/10.1076/apab.108.5.444.4297

Goodarzi MT, Navidi AA, Rezaei M, Babahmadi‐Rezaei H. Oxidative damage to DNA and lipids: correlation with protein glycation in patients with type 1 diabetes. Journal of clinical laboratory analysis. 2010 Mar;24(2):72-6. DOI: https://doi.org/10.1002/jcla.20328

Altuhafi A, Altun M, Hadwan MH. The Correlation between Selenium-Dependent Glutathione Peroxidase Activity and Oxidant/Antioxidant Balance in Sera of Diabetic Patients with Nephropathy. Reports of Biochemistry & Molecular Biology. 2021 Jul;10(2):164. DOI: https://doi.org/10.52547/rbmb.10.2.164

Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative medicine and cellular longevity. 2019 Oct 13;2019. DOI: https://doi.org/10.1155/2019/5080843

Sedighi O, Makhlough A, Shokrzadeh M, Hoorshad S. Association between plasma selenium and glutathione peroxidase levels and severity of diabetic nephropathy in patients with type two diabetes mellitus. Nephro-urology monthly. 2014 Sep;6(5). DOI: https://doi.org/10.5812/numonthly.21355

Salimian M, Soleimani A, Bahmani F, Tabatabaei SM, Asemi Z, Talari HR. The effects of selenium administration on carotid intima-media thickness and metabolic status in diabetic hemodialysis patients: A randomized, double-blind, placebo-controlled trial. Clinical Nutrition ESPEN. 2022 Feb 1;47:58-62. DOI: https://doi.org/10.1016/j.clnesp.2021.11.022

Østergaard JA, Cooper ME, Jandeleit-Dahm KA. Targeting oxidative stress and anti-oxidant defence in diabetic kidney disease. Journal of nephrology. 2020 Oct;33(5):917-29. DOI: https://doi.org/10.1007/s40620-020-00749-6

Xu D, Wu L, Yao H, Zhao L. Catalase‐Like Nanozymes: Classification, Catalytic Mechanisms, and Their Applications. Small. 2022 Sep;18(37):2203400. DOI: https://doi.org/10.1002/smll.202203400

Padalkar RK, Shinde AV, Patil SM. Lipid profile, serum malondialdehyde, superoxide dismutase in chronic kidney diseases and type 2 diabetes mellitus. Biomedical Research. 2012 Apr 1;23(2):207-10.

Seghrouchni I, Drai J, Bannier E, Rivière J, Calmard P, Garcia I, Orgiazzi J, Revol A. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clinica Chimica Acta. 2002 Jul 1;321(1-2):89-96. DOI: https://doi.org/10.1016/S0009-8981(02)00099-2

Sharma M, Gupta S, Singh K, Mehndiratta M, Gautam A, Kalra OP, Shukla R, Gambhir JK. Association of glutathione-S-transferase with patients of type 2 diabetes mellitus with and without nephropathy. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2016 Oct 1;10(4):194-7. DOI: https://doi.org/10.1016/j.dsx.2016.06.006

van de Wetering C, Elko E, Berg M, Schiffers CH, Stylianidis V, van den Berge M, Nawijn MC, Wouters EF, Janssen-Heininger YM, Reynaert NL. Glutathione S-transferases and their implications in the lung diseases asthma and chronic obstructive pulmonary disease: Early life susceptibility?. Redox Biology. 2021 Jul 1;43:101995. DOI: https://doi.org/10.1016/j.redox.2021.101995

Alaminos‐Castillo MÁ, Ho‐Plagaro A, García‐Serrano S, Santiago‐Fernandez C, Rodríguez‐Pacheco F, Garrido‐Sanchez L, Rodriguez C, Valdes S, Gonzalo M, Moreno‐Ruiz FJ, Rodríguez‐Cañete A. Increased PON lactonase activity in morbidly obese patients is associated with impaired lipid profile. International journal of clinical practice. 2019 Jun;73(6):e13315. DOI: https://doi.org/10.1111/ijcp.13315

Cervellati C, Trentini A, Romani A, Bellini T, Bosi C, Ortolani B, Zurlo A, Passaro A, Seripa D, Zuliani G. Serum paraoxonase and arylesterase activities of paraoxonase‐1 (PON‐1), mild cognitive impairment, and 2‐year conversion to dementia: A pilot study. Journal of neurochemistry. 2015 Oct;135(2):395-401. DOI: https://doi.org/10.1111/jnc.13240

Ayan D, Şeneş M, Çaycı AB, Söylemez S, Eren N, Altuntaş Y, Öztürk FY. Evaluation of paraoxonase, arylesterase, and homocysteine thiolactonase activities in patients with diabetes and incipient diabetes nephropathy. Journal of medical biochemistry. 2019 Oct;38(4):481. DOI: https://doi.org/10.2478/jomb-2019-0014

Günay GK, Bayrak TA, Özdin M. The Relationship of Lipo (a) and Paraoxonase with Diabetes Mellitus. Geleneksel ve Tamamlayıcı Anadolu Tıbbı Dergisi. 2019;1(2):5-8.

Bohlouli J, Namjoo I, Borzoo-Isfahani M, Kermani MA, Zehi ZB, Moravejolahkami AR. Effect of probiotics on oxidative stress and inflammatory status in diabetic nephropathy: A systematic review and meta-analysis of clinical trials. Heliyon. 2021 Jan 1;7(1):e05925. DOI: https://doi.org/10.1016/j.heliyon.2021.e05925

Downloads

Published

23-04-2022

How to Cite

Al-Khafaji, A., Mir, S., Mohammadzadeh, F., Abolghasemi, M., & Hadwan, M. (2022). The relationship between melatonin level and antioxidant enzymes in diabetic patients with and without nephropathy. Baghdad Journal of Biochemistry and Applied Biological Sciences, 4(02). https://doi.org/10.47419/bjbabs.v4i02.207

Plaudit