Antimicrobial activity of n-hexane and ethyl acetate extracts from Candida tropicalis and Phyllosticta capitalensis fungal endophytes

Authors

  • Fulgence N. Mpenda Department of Molecular Biology and Biotechnology, University of Dar es Salaam, P.O. Box 35179, Dar es Salaam, Tanzania
  • Mwanaisha Mkangara Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, P.O. Box 2958, Dar es Salaam, Tanzania

DOI:

https://doi.org/10.47419/bjbabs.v3i02.118

Keywords:

antimicrobial activity, Cnidoscolus aconitifolius, endophytic fungi, medicinal plants, Ocimum suave

Abstract

Background ad objective: Among the notable achievements of the twentieth century was the discovery and identification of new drugs from plants against microbial infections. However, the discovery of novel drugs since then is inadequate due to emergence of resistant microbes. In an effort to discover novel drugs, the study aimed to investigate the antimicrobial activity of crude extracts from endophytic fungi isolated from Cnidoscolas aconitifolius and Ocimum suave.

Methods: Following morphological characterization and initial screening for antimicrobial activity, isolates that had higher inhibition were genotypes by Sanger sequencing. Two isolates (Candida tropicalis from O. suave and Phyllosticta capitalensis from C. aconitifolius) were tested for antimicrobial activity against Escherichia coli and Staphylococcus aureus.

Results: Overall, the range of crude extract concentration was from 152 mg/mL to 1353 mg/mL, and that of a zone of inhibition was from 7 to 21 mm. The lowest minimum inhibition concentration (19>MIC>9.5) was observed in Phyllosticta spp. extract against S. aureus.

Conclusions: Findings of the present study have shown that endophytes isolated from medicinal plants can generate secondary metabolites with therapeutic applications. Therefore, further investigations are warranted to decipher the content and structure of bioactive compounds that may be associated with the antimicrobial activity of crude extracts.

Downloads

Download data is not yet available.

References

A E Bastos et al. “Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples”. Arch Microbiol 174(5) (2000), pp. 346–352. DOI: 10.1007/s002030000216. DOI: https://doi.org/10.1007/s002030000216

A L Khan et al. “Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: An examples of Penicillium janthinellum LK5 and comparison with exogenous GA3”. J Hazard Mater 295 (2015), pp. 70–78. DOI: 10.1016/j.jhazmat.2015.04.008. DOI: https://doi.org/10.1016/j.jhazmat.2015.04.008

B Masresha, E Makonnen, and A Debella. “In vivo anti-inflammatory activities of Ocimum suave in mice”. J Ethnopharmacol 142(1) (2012), pp. 201–205. DOI: 10.1016/j.jep.2012.04.041. DOI: https://doi.org/10.1016/j.jep.2012.04.041

B U Furtado et al. “Bacterial and fungal endophytic microbiomes of Salicornia europaea”. Appl Environ Microbiol 85 (2019), pp. 305–324. DOI: 10.1128/AEM.00305-19. DOI: https://doi.org/10.1128/AEM.00305-19

E Ancheeva, G Daletos, and P Proksch. “Bioactive secondary metabolites from endophytic fungi”. Curr Med Chem 27(11) (2020), pp. 1836–1854. DOI: 10.2174/0929867326666190916144709. DOI: https://doi.org/10.2174/0929867326666190916144709

E Padilla-Camberos et al. “Anti-Inflammatory activity of Cnidoscolus aconitifolius (Mill.) ethyl acetate extract on croton oil-induced mouse ear edema”. Applied Sciences 11(20) (2021), pp. 9697–9697. DOI: 10.3390/app11209697. DOI: https://doi.org/10.3390/app11209697

E Rauenbusch. “Penicillin action and penicillin resistance. The significance of penicillinases and cephalosporinases”. Antibiot Chemother 14 (1968), pp. 95–178. DOI: https://doi.org/10.1159/000386762

G Kumar et al. “Isothiocyanates: a class of bioactive metabolites with chemopreventive potential”. Tumour Biol 36(6) (2015), pp. 4005–4016. DOI: 10.1007/s13277-015-3391-5. DOI: https://doi.org/10.1007/s13277-015-3391-5

J Liu and G Liu. “Analysis of secondary metabolites from plant endophytic fungi”. Methods Mol Biol 1848 (2018), pp. 25–38. DOI: 10.1007/978-1-4939-8724-5_3. DOI: https://doi.org/10.1007/978-1-4939-8724-5_3

Julius Tibyangye et al. “In vitro antibacterial activity of Ocimum suave essential oils against uropathogens isolated from patients in selected hospitals in Bushenyi district, Uganda”. Br Microbiol Res J 8(3) (2015), pp. 489–498. DOI: 10.9734/BMRJ/2015/17526. DOI: https://doi.org/10.9734/BMRJ/2015/17526

K E Jones, N G Patel, and M A Levy. “Global trends in emerging infectious diseases”. Nature 451(7181) (2008), pp. 990–993. DOI: 10.1038/nature06536. DOI: https://doi.org/10.1038/nature06536

K Jakubczyk et al. “Garden nasturtium (Tropaeolum majus L.) - a source of mineral elements and bioactive compounds”. Rocz Panstw Zakl Hig 69(2) (2018), pp. 119–126.

K Ye, H L Ai, and J K Liu. “Identification and bioactivities of secondary metabolites derived from endophytic fungi isolated from ethnomedicinal plants of Tujia in Hubei province: A review”. Nat Prod Bioprospect 11(2) (2021), pp. 185–205. DOI: 10.1007/s13659-020-00295-5. DOI: https://doi.org/10.1007/s13659-020-00295-5

L Brinkac et al. “The threat of antimicrobial resistance on the human microbiome”. Microb Ecol 74(4) (2017), pp. 1001–1008. DOI: 10.1007/s00248-017-0985-z. DOI: https://doi.org/10.1007/s00248-017-0985-z

Lfwg Moura, J X Da Silva Neto, Tdp Lopes, et al. “Ethnobotanic, phytochemical uses and ethnopharmacological profile of genus Cnidoscolus spp. (Euphorbiaceae): A comprehensive overview”. Biomed Pharmacother 109 (2019), pp. 1670–1679. DOI: 10.1016/j.biopha.2018.10.015. DOI: https://doi.org/10.1016/j.biopha.2018.10.015

M Jia, L Chen, H L Xin, et al. “Friendly relationship between endophytic fungi and medicinal plants: A systematic review”. Front Microbiol 7 (2016), pp. 906–906. DOI: 10.3389/fmicb.2016.00906. DOI: https://doi.org/10.3389/fmicb.2016.00906

M S Baliga, Jimmy R Thilakchand, and K R. “Ocimum sanctum L (Holy Basil or Tulsi) and its phytochemicals in the prevention and treatment of cancer”. Nutr Cancer 65 (2013), pp. 26–35. DOI: 10.1080/01635581.2013.785010. DOI: https://doi.org/10.1080/01635581.2013.785010

M Sharifi-Rad, D Mnayer, and Mfb Morais-Braga. “Echinacea plants as antioxidant and antibacterial agents: From traditional medicine to biotechnological applications”. Phytother Res 32(9) (2018), pp. 1653–1663. DOI: 10.1002/ptr.6101. DOI: https://doi.org/10.1002/ptr.6101

Mahmoudian-Sani M-R et al. “A review on medicinal plants used for treating ototoxicity and acoustic trauma induced hearing loss”. Braz J Pharm Sci 55 (2019). DOI: https://doi.org/10.1590/s2175-97902019000218311

N Silva, C J Phythian, and C Currie. “Antimicrobial resistance in ovine bacteria: A sheep in wolf’s clothing?” PLoS One 15(9) (2020), pp. 238708–238708. DOI: 10.1371/journal.pone.0238708. DOI: https://doi.org/10.1371/journal.pone.0238708

Paul V. Tan et al. “Antioxidant capacity, cytoprotection, and healing actions of the leaf aqueous extract of Ocimum suave in rats subjected to chronic and cold-restraint stress ulcers” (2013), pp. 150780–150780. DOI: 10.1155/2013/150780. DOI: https://doi.org/10.1155/2013/150780

R Rocha, D E Da Luz, and C Engels. “Selection of endophytic fungi from comfrey (Symphytum officinale L.) for in vitro biological control of the phytopathogen Sclerotinia sclerotiorum (Lib.)” Braz J Microbiol 40(1) (2009), pp. 73–78. DOI: 10.1590/S1517-838220090001000011. DOI: https://doi.org/10.1590/S1517-83822009000100011

R V García-Rodríguez, G A Gutiérrez-Rebolledo, E Méndez-Bolaina, et al. “Cnidoscolus chayamansa Mc Vaugh, an important antioxidant, anti-inflammatory and cardioprotective plant used in Mexico”. J Ethnopharmacol 151(2) (2014), pp. 937–943. DOI: 10.1016/j.jep.2013.12.004. DOI: https://doi.org/10.1016/j.jep.2013.12.004

S Wikee, L Lombard, and P W Crous. “Phyllosticta capitalensis, a widespread endophyte of plants”. Fungal Diversity 60 (2013), pp. 91–105. DOI: 10.1007/s13225-013-0235-8. DOI: https://doi.org/10.1007/s13225-013-0235-8

Santos Ip Dos et al. “Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae)”. Frontiers in Microbiology 6 (2015). DOI: 10.3389/fmicb.2015.00350. DOI: https://doi.org/10.3389/fmicb.2015.00350

T H Grossman. Tetracycline antibiotics and resistance. 6(4) (2016), a025387–a025387. DOI: 10.1101/cshperspect.a025387. DOI: https://doi.org/10.1101/cshperspect.a025387

T Sen and S K Samanta. “Medicinal plants, human health and biodiversity: a broad review”. Adv Biochem Eng Biotechnol 147 (2015), pp. 59–110. DOI: 10.1007/10_2014_273. DOI: https://doi.org/10.1007/10_2014_273

U Sahin et al. “Penicillin resistance in Streptococcus pneumoniae in Isparta”. Respirology 6(1) (2001), pp. 23–26. DOI: 10.1046/j.1440-1843.2001.00292.x. DOI: https://doi.org/10.1046/j.1440-1843.2001.00292.x

W Grzybowska et al. “Estimation of activity of pharmakopeal disinfectants and antiseptics against Gram-negative and Gram-positive bacteria isolated from clinical specimens, drugs and environment”. Med Dosw Mikrobiol 59(1) (2007), pp. 65–73.

W L Wei et al. “Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis”. J Ethnopharmacol 190 (2016), pp. 116–141. DOI: 10.1016/j.jep.2016.05.023. DOI: https://doi.org/10.1016/j.jep.2016.05.023

Published

14-05-2022

How to Cite

Mpenda, F., & Mkangara, M. (2022). Antimicrobial activity of n-hexane and ethyl acetate extracts from Candida tropicalis and Phyllosticta capitalensis fungal endophytes. Baghdad Journal of Biochemistry and Applied Biological Sciences, 3(02), 109–121. https://doi.org/10.47419/bjbabs.v3i02.118

Plaudit